I Hyperparamter search and meta learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Getting the most out of your models

» You’ve come far since the beginning of this course
» You can now train image classification models, timeseries forecasting models, text-
classification models, and even generative models for images
» The flexibility of neural networks, however, is also one of their main drawbacks: there are
many hyperparameters to tweak
How many layers should you stack?
How many units or filters should go in each layer?
Should you use ReLU as activation, or a different function?
Should you use BatchNormalization after a given layer?
How much dropout should you use?

» These architecture-level parameters are called hyperparameters to distinguish them from
the parameters of a model, which are trained via backpropagation

1. Hyperparamter search

» One option is to simply try many combinations of hyperparameters and see
which one works best on the validation set (or use K-fold cross-validation)
We can use GridSearchCV or RandomizedSearchCV to explore the hyperparameter space

When training is slow, however (e.g., for more complex problems with larger datasets), this
approach will only explore a tiny portion of the hyperparameter space

Grid Search Randomized Search
with 3x3 grid with 9 iterations

Unimportant feature
Unimportant feature

Important feature Important feature

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-
cfa76de27cob

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-cfa76de27c6b

Hyperparamter search

» You can alleviate this problem by assisting the search process manually

» First run a quick random search using wide ranges of hyperparameter values, then run
another search using smaller ranges of values centered on the best ones found during the
first run, and so on. This approach will hopefully zoom in on a good set of hyperparameters

» The core idea of most of the advance algorithm is . -
simple: when a region of the space turns out to be good, ol o
It should be explored more. Such techniques take care of e y
the “zooming” process for you and lead to much better ®® ®
solutions in much less time
» There are plenty of hyperparameter search algorithms (
Bayesian optimization, evolutionary optimization, early RS
stopping-based (Hyperband) ...
However, most of them are no longer embarrassing parallel .. \.f.
€
[4

https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization

Why automatically hyperparamter search?

» In practice, experienced machine learning engineers build intuition over time
as to what works and what doesn’t when it comes to hyperparamter search

But it shouldn’t be your job as a human to fiddle with hyperparameters all day—that is
better left to a machine. Thus you need to explore the space of possible decisions
automatically, systematically, in a principled way. The process of optimizing looks like this:

Choose a set of hyperparameters (Automatically)

Build the corresponding model

Fit it to your training data, and measure performance on the validation data

Choose the next set of hyperparameters (Automatically)

Repeat

Eventually, measure performance on a test data

Why automatically hyperparamter search?

» The key to this process Is various hyperparameter values to choose the next set
of hyperparameters to evaluate. But it is challenging considering the fact that

The hyperparameter space is typically made up of discrete decisions and thus isn’t
continuous or differentiable. Hence, you typically can’t do gradient descent in
hyperparameter space. Instead, you must rely on gradient-free optimization techniques,
which naturally are far less efficient than gradient descent

Computing the feedback signal of this optimization process (does this set of
hyperparameters lead to a high-performing model on this task?) can be extremely
expensive: it requires creating and training a new model from scratch on your dataset

The feedback signal may be noisy: if a training run performs 0.2% better, is that because
of a better model configuration, or because you got lucky with the initial weight values?

Why automatically hyperparamter search?

» Overall, hyperparameter optimization is a powerful technique that is an
absolute requirement for getting to state-of-the-art models on any task

» Think about it: once upon a time, people handcrafted the features that went into shallow
machine learning models. That was very much suboptimal. Now, deep learning automates
the task of hierarchical feature engineering—features are learned using a feedback signal,
not hand-tuned, and that’s the way it should be

» In the same way, you shouldn’t handcraft your model architectures; you should optimize
them in a principled way

» However, doing hyperparameter tuning is not a replacement for being familiar with model
architecture best practices. You need to be smart about designing the right search space.
Hyperparameter tuning is automation, not magic: you use it to automate experiments that
you would otherwise have run by hand, but you still need to handpick experiment
configurations that have the potential to yield good metrics

Automatically hyperparamter search to AutoML

» We can also be far more ambitious and attempt to generate the model
architecture itself from scratch, with as few constraints as possible, such as via
reinforcement learning or evolutionary algorithms

For example, Google has used an evolutionary
approach, not just to search for

hyperparameters but also to look for the best) O [P

neural network architecture for the problem; semchopace | SearCh Performance

their AutoML suite is already available as a | e RS °i‘s’“9" ;

cloud service ’W i m lcamea™ __ | Fina
In the future, entire end-to-end machine ol | R \«»@:—e-'/ ™
learning pipelines will be automatically e T |
generated, rather than be handcrafted by ... ot
engin_eer-artisa_ms. This is called automated e
machine learning, or AutoML machine-learning-in-action

https://www.manning.com/books/automated-machine-learning-in-action
https://cloud.google.com/automl/

2. What I1s Meta Learning?

» Meta learning is one of the key component behind AutoML

Can we learn this function?

A
ﬂl’raining Examples\
> | function
ﬁ *@- Learning
' dog algorithm Hand-crafted

J

Input

classifier
; Testng f] Learned from data
Cat

output

Review: Gradient descent

0*
NAS MAML A

¢ /
Network ¢
Structure [lInit

Update —60'— Update —6"

gradient gradient
Gradient T T
Descent __, Compute ., Compute

Training Training

Data Data

10

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx

Dl
5 N LE |
Search Performance

Meta Iearning T Step 1 strategy evaluatioiistrategyé
» What is learnable in a learning algorithm? " [slgeritm —'T -
. Component
Training Examples F

— ¢ i Net Architecture,
r i A Deep : Initial Parameters, :
:," o — F G—
: \ Learning : Learning Rate,
cat dog E

¢: learnable components
v

— * classifier
; Testing /

}

cat Categorize meta learning
11 based on what is learnable

—

Meta learning — Step 2 S
» Define loss function for learning algorithm F " [Sgortm | T T ~
» Sample tasks from training tasks (Analog of training sample

In supervised learning) L($)

L(¢) | @)

Task 1 a3
Apple& | Train w -
Training Orange apple orange
Tasks
' Test | @) %
Car & Bike Train ﬁ?

12

Meta learning — Step 2

-

Training g
Task 1
Examples 6 —

apple orange

Testing Fy o
Examples]
@ @B/
i apple orange apple orange
T CTTT T TR T Ao
apple orange prediction =..QEQ.S.S.-.G.DHQW.;....Qrp.aszent.r.qpy:;
| |
lll Compute L
‘ difference <« * apple orange apple orange

- Ground Truth

Meta learning — Step 2

Training "
Task 1
Examples 6 —
apple orange
Testing Fy
Examples I
w @ o
— y
apple orange | prediction

Task 2
Testing
Examples
—»fBZ*
b
bike car prediction
I |

Total loss: L(¢p) =[I + 12] (sum over all the

14

training tasks)

Meta learning — Step 3

» Loss function for learning algorithm where N is the =

number of training tasks we collect N
L@)=) 1"
» Find ¢ that can minimize L(¢) n=1

¢° =argmin L(¢)
» Using the optimization approach you know

If you know how to compute dL(¢p)/d¢p

Gradient descent is your friend.
What if L(¢) is not differentiable?
Reinforcement Learning / Evolutionary Algorithm

Now we have a learned “learning algorithm” F ;-

15

ll
*

Training Tasks
Task 1 Task 2

*
.

Framework

Related to the testing task 6 -y

*

v,
v & * . Learned
_ fﬂf > Fy+ “Learning
Testing dog Algorithm”
.~ Task Train l
»
What we really =~ Test ; > for
care about | I
cat

16

N If your optimization method needs to

Framework — [(¢) =) compute L(¢)

n=1 Outer Loop in “Learning to initialize”
~ (. .
Traini - Across-task training (Meta-training)
Support set E)I;::I?ITSS 6 | Includes several within-task training
P apple orange and testing
: ; Inner Loop in “Learning to initialize”
Query set TeStlng Fd) P g
Examples I t
-y B f Within-task Training
@ ‘%)\ —— for
- y
apple orange prediction Within-task Testing

1
- » To compute the loss

Framework Across-task
Testing
1. Meta-training 2. Meta-testing
Base set episode Support set
epoch 1 -
epoch N-

18

https:/[neptune.ai/hlog/understanding-few-shoi-learning-in-computer-vision

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

3. Model-Agnostic Meta-Learning (MAML) 6™: model learned from task n

Loss Function:

N

A™ depends on ¢

L(¢) = 2 [n(gn) [™"(6™): loss of task n on the
testing set of task n A
n=1 Q
Network . -
6
Structure |I;II ¢ I Up;late —0" — Upilate —
Vo \7‘9
Learning T
Algorithm Compute . Compute
(Function F) Gradient Gradient
Only focus on 1 T
Initialization parameter | Training Training
Data Data

19

¢

20

MAML A™: model learned from task n

Loss Function: 6™ depends on ¢

N
L(¢p) = Z ln(én) [™(6™): loss of task n on the
n=1

testing set of task n

How to minimize L(¢)? Gradient Descent
¢ — ¢ —nVyL(p)
Find ¢ achieving good performance after

. Potential
training

Model Pre-training Loss Function: N

Widely used in L(p) = Z " ()

transfer learning =1

Current

Find ¢ achieving good performance performance

https://towardsdatascience.com/paper-repro-deep-metalearning-using-maml-and-reptile-fd1df1cc81b0

We don’t care about the

MAML performance of ¢ on the
training task

N
L(p) = z l"(é") We care about the 8™ derive
n=1 from (p

1 (Loss
of task 1)

1% (Loss
of task 2)

Small 12(6?)
K

K Model

Parameter
21

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Meta1%20(v6).pptx

Model Pre-training

Find the ¢ that is good for all task
We do not guarantee whether

L(¢) = z " () ¢ will get good 5™

1 (Loss 1% (Loss
2 (92) of task 1) of task 2)

Model

Parameter
22

Few-shot Image Classification

» Each class only has a few images

. -y
w S

——i

Class1 Class1 Class2 Class2 Class3 Class3 Which
3-ways 2-shot Class?
» N-ways K-shot classification: In each task, there are N classes, each has K
examples
» In meta learning, you need to prepare many N-ways K-shot tasks as training
and testing tasks

L
RIS

23

Jall it Yalk7a
AL 7all ZaRIE VL -4

» v T
Eroa 2 E” vV

Omniglot

» 1,623 characters

» Each has 20 examples

b>er« £ygeam P 0L H 2 NEA
b RPN 000
G P PIJY R TN DA~
FP oxmrer XY O s
Pl naNE o T 2O
~ O 2N ATy & SD
CeCZVY P 30T B oS
WEeE< L ks a2z

EDR3w nWe 7N T DX

29 72 3P e K FERERe et B
DHOUE R TE . e @
w T OB MQYe € EE I D >
A P K72 @ gL L. WO Y
N ANl £ RQIVY @, . N R o)
ENJeq d3coTITM& s e =
S TV I d2 |2 @ s
NINeEC283IV0>95glk 1+ § §
JY D 9w d <IT a8
1 U>8 ca RS [Ghvdp = o §
sl ddrk b § 5T ~v
DAl pPrMP gca9-0H
sl] v Fgo Jnmik
Ll APPSR IS GO may
SR fpik oK 893060
=TT - PRZ) x) LT 4 R
= O BRY S F o0 > —

=X =p 3M) 00T F A
—E T EWR~ N D TADH LK X
TR gl B b IS0 L
folorm MR G ® 23 o9 98
APNNPOPSE e € c = 3 -
TINER T SBY o> 1/ 4
O M OSe~dm 3 9 - 4
Fadeebl MY GEE@ < = 41X R

24

https://github.com/brendenlake/omniglot

Omniglot

» Split your characters into training and testing characters

Sample N training characters, sample K examples from each sampled characters — one
training task

Sample N testing characters, sample K examples from each sampled characters — one
testing task

20 ways MR A= 3 _ﬂ Testing set

1 shot |7 R 7 (Query set)
™ .

Each character VAR I'\ Training set

represents a class | ** AR IC 1 (Support set) Demo:

25

https://openai.com/blog/reptile/

A brief introduction to Reinforcement Learning

» Reinforcement Learning

26

Reinforcement Learning is very different
one. The learning system, called an
agent in this context, can observe the
environment, select and perform actions,
and get rewards in return

It must then learn by itself what is the
best strategy, called a policy, to get the
most reward over time

Robots, AlphaGo...

Environment ==~ ="3
' |
|
" - l
RN Qzﬂjmj oObserve
| \‘
|
|
|
|
|

. o Select action using policy

|

1

]
-1
gl
|

]

|

1

]

]

o Getreward or penalty

-50 points QE | OAction!

&=bad!

Next time avoid it. Q%i" o Update policy (learning step)
. o Iterate until an optimal policy is found

4. Network Architecture Search (NAS)

» Evolutionary algorithm or Reinforcement learning

¢ = argmin L(¢) Ve L(¢p) =?

¢
\ Network
Architecture

An agent uses a set of actions to —L(¢)
determine the network architecture. Reward to be

¢ the agent’s parameters maximized

27

Network Architecture Search (NAS)

» Key idea Is that we can specify the structure and connectivity of a neural
network by using a configuration string
[“Filter Width: 5, “Filter Height: 37, “Num Filters: 24”]

» The idea Is to use a RNN (“agent™) to generate this string that specifies a neural
network architecture

» Train this architecture (“child network”) to see how well it performs on a
validation set

» Use reinforcement learning to update the parameters of the agent model based
on the accuracy of the child model

» The implementation is available

28

https://github.com/titu1994/neural-architecture-search

Network Architecture Search (NAS)
Across-task Update ¢ to maximize reward —L(¢)

Tralnlng ber| | Filter | | Filter | | Stride | | Stride | [Number| | Fikter
“ Mbf Filters[, | Height [% | width \ | Height |\ | Width |of Filters|. Height [\

L T T T T

softmax layer 3 L 1l Fu o o[o[1> form a network with
Lo oot Lo T probabilities p

> » > o B 1 » > g
WA WA LA LA LA LA y A 5 A

> -« >
Layer M Layer N+1

agent ¢ (RNN)

PN C3:1. maps 16@10x10
: leature maps S4: 1. maps 16@5x5
6@2828

S2:f. ma C5: layer
rr 20 ;:86‘ layer ?llePUT

g =
e,

Layer N-1

—L(¢)

INPUT
3232

Accuracy of
the network

|
com{ecu’on | Gaussian connections

| Full

Convolutions Subsampiing Comvolutions Subsampling Full connection
AFull Convolutional Neural Network (LeNet) -
Train the network
Https:7/farxivory/pdf 161101578 puf W|th | n_task Tral 1 | ng

29

https://arxiv.org/pdf/1611.01578.pdf

NAS

» Their design may be based on
reinforcement learning (RL),
evolutionary algorithm (EA), gradient
optimization (GO), random search
(RS), and sequential model-based
optimization (SMBO)...

» Some popular models

30

Search Top 1/Top | Params |Image Size| GPU
method [Reference Venue 5 Acc (%) | (Millions) | (squared) Days
Mobilenets [6] CoRR17 70.6/89.5 4.2 224 -
ResNeXt [140] CVPR17 80.9/95.6 83.6 320 -
Human [Polynet [141] CVPR17 81.3/95.8 92.0 331 -
DPN [142] NIPS17 81.5/95.8 79.5 320 -
Shufflenet [139] CVPR18 70.9/89.8 5.0 224 -
NASNet [32] CVPR18 82.7/96.2 88.9 331 2,000
NASNet-A [32] CVPR18 | 74.0/91.6 5.3 224 2,000
RL Block-QNN [33] CVPR18 | 77.4/93.5 N/A 224 96
N2N learning [52] ICLR18 69.8/N/A 3.34 32 11.3
Path-level EAS [57] ICML18 74.6/91.9 594 224 200
FPNAS [39] ICCV19 73.3/N/A 341 224 0.8
GeNet [16] ICCV17 72.1/90.4 156 224 17
Hierarchical-EAS [34] ICLR18 79.7/94.8 64.0 299 300
EA |AmoebaNet-A (N=6, F=190) [43] AAATIO | 82.8/96.1 86.7 331 3,150
AmoebaNet-A (N=6, F=448) [43] AAAII9 | 83.9/96.6 469 331 3,150
Single-Path One-Shot NAS [106] CoRR19 74.7/N/A N/A 224 <1
Understanding One-Shot Models [22] ICML18 75.2/N/A 11.9 224 N/A
SMASH [23] ICLR18 | 61.4/83.7 16.2 32 3
Maskconnect [70] ECCV18 79.8/94.8 N/A 224 N/A
PARSEC [132] CoRR19 74.0/91.6 5.6 N/A 1
DARTS [17] ICLR19 73.3/91.3 47 224 4
SNAS [46] ICLR19 72.7/90.8 4.3 224 1.5
ProxylessNAS [104] ICLR19 75.1/92.5 N/A 224 8.33
GO GHN [91] ICLR19 73.0/91.3 6.1 224 0.84
SETN [92] ICCV19 74.3/92.0 N/A 224 1.8
TAS [126] NeurIPS19 | 69.2/89.2 N/A 224 2.5
XNAS [115] NeurIPS19 | 76.1/N/A 5.2 224 0.3
GDAS [83] CVPR19 72.5/90.9 44 224 0.17
FBNet-C [103] CVPR19 74.9/N/A 5.5 224 9
SGAS [153] CVPR20 75.6/92.6 54 224 0.25
PC-DARTS (CIFAR10) [84] ICLR20 74.9/92.2 5.3 224 0.1
PC-DARTS (ImageNet) [84] ICLR20 75.8/92.7 5.3 224 3.8
RS |Hierarchical-EAS Random [34] ICLR18 79.0/94.8 N/A 299 300
PNAS (Mobile) [37] ECCV18 | 74.2/91.9 5.1 224 225
SMBO |PNAS (Large) [37] ECCV18 82.9/96.2 86.1 331 225
DPP-Net [35] ECCV18 75.8/92.9 77.2 224 2

https://ai.googleblog.com/2021/09/toward-fast-and-accurate-neural.html
https://arxiv.org/abs/2003.13678
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://arxiv.org/abs/2006.02903

5. Automatic machine learning

» Automated machine learning (AutoML) is the process of automating the tasks
of applying machine learning to real-world problems

31

Meta-learning and automatically
hyperparameter tuning are two key
components

However, AutoML potentially includes
every stage from beginning with a raw
dataset to building a machine learning
model ready for deployment (data
preprocessing, feature engineering, model
selection and hyperparameter tuning)

Automated algorithm
selection and tunlng

Tralmng

..

| Training

‘| dataset

https://www.manning.com/books/automated-

machine-learning-in-action

Move human out of

~__the loop

Manually adjust
hyperparameter

Learned
model

Validation |
dataset

5‘ model | :

- Testing by

Final

|

dataset

Test

https://en.wikipedia.org/wiki/Automated_machine_learning
https://www.manning.com/books/automated-machine-learning-in-action

Automatic machine learning

» Users with more ML expertise can achieve more personalized solutions
to meet their requirements using lower-level libraries

DL libraries (APls) for building up AutoDL libraries (APIs) for
DL pipelines tuning DL pipelines
\ A
[\ [|
TensorFlow TensorFlow Keras API Keras Tuner AutoKeras
Configurable Simple
’ More customizable arguments and Less customizable arguments and ‘
structures of DL pipelines with more structures of DL pipelines with simpler
complex APls and use cases APIs for modeling and tuning

https://www.manning.com/books/automated-machine-learning-in-action

32

https://www.manning.com/books/automated-machine-learning-in-action

Conclusion

» Hyperparameter selection is crucial for the success of your neural network
architecture, since they heavily influence the behavior of the learned model

Automatic hyperparameter tuning is an area that studies how to efficiently search the space
of possible hyperparameters

» Meta-learning can be a powerful tool for AutoML

Model-Agnostic Meta-Learning and Network Architecture Search are two active research
fields

» Today, AutoML is still in its early days, and it doesn’t scale to large problems
But when AutoML becomes mature enough for widespread adoption, the jobs of machine
learning engineers will move up the value-creation chain

They will begin to put much more effort into data curation, crafting complex loss functions
that truly reflect business goals, as well as understanding how their models impact the
digital ecosystems in which they’re deployed

33

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
Chapter 11,19

2] Deep learning with Python, 2nd Edition Chapter 13
3] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php Lecture 15
4] Automated Machine Learning in Action Chapter 1 and Chapter 4

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://www.manning.com/books/automated-machine-learning-in-action

Appendix

35

Resources

» Automatic machine learning
» https://en.wikipedia.org/wiki/Automated machine learning
» https://en.wikipedia.org/wiki/Neural architecture search
» https://en.wikipedia.org/wiki/Hyperparameter optimization

» Meta learning
» A Survey of Deep Meta-Learning
» AutoAugment: Learning Augmentation Policies from Data
» Learning an Explicit Mapping For Sample Weighting
» Learning to learn by gradient descent by gradient descent
» Metric learning
» Revisiting Metric Learning for Few-Shot Image Classification

https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://arxiv.org/abs/2010.03522
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1902.07379
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1907.03123

Libraries

» Hyperas or Talos
» Useful libraries for optimizing hyperparameters for Keras models (the former is based on Hyperopt)

» Topt

» Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

» Neural network inference, h20-3 or AutoGlon
» An open source AutoML toolkit for automate machine learning lifecycle
» Scikit-Optimize (skopt)

» A general-purpose optimization library. The BayesSearchCV class performs Bayesian optimization using
an interface similar to GridSearchCV

» Sklearn-Deap

» A hyperparameter optimization library based on evolutionary algorithms, with a GridSearchCV-like
interface

https://github.com/maxpumperla/hyperas
https://github.com/autonomio/talos
https://github.com/hyperopt/hyperopt/
https://github.com/EpistasisLab/tpot
https://github.com/microsoft/nni
https://github.com/h2oai/h2o-3
https://github.com/awslabs/autogluon
https://scikit-optimize.github.io/stable/
https://github.com/rsteca/sklearn-deap

Services

» https://sigopt.com/

» https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-
tuning
» https://bigml.com/api/optimls

https://sigopt.com/
https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-tuning
https://bigml.com/api/optimls

Rethinking about deep learning

» In deep learning, everything Is a vector—that is to say, everything is a point in

d geometric Space.

» Model inputs (text, images, and so on) and targets are first vectorized— turned into an
Initial input vector space and target vector space. Each layer in a deep learning model
operates one simple geometric transformation on the data that goes through it. Together,
the chain of layers in the model forms one complex geometric transformation, broken
down into a series of simple ones. This complex transformation attempts to map the input
space to the target space, one point at a time.

» This transformation is parameterized by the weights of the layers, which are iteratively
updated based on how well the model is currently performing. A key characteristic of this
geometric transformation is that it must be differentiable, which is required in order for us
to be able to learn its parameters via gradient descent. Intuitively, this means the geometric
morphing from inputs to outputs must be smooth and continuous—a significant constraint

Rethinking about deep learning

» The entire process of applying this complex geometric transformation to the input data can
be visualized in 3D by imagining a person trying to uncrumple a paper ball: the crumpled
paper ball is the manifold of the input data that the model starts with. Each movement
operated by the person on the paper ball is similar to a simple geometric transformation
operated by one layer. The full uncrumpling gesture sequence is the complex
transformation of the entire model. Deep learning models are mathematical machines for
uncrumpling complicated manifolds of highdimensional data

» That’s the magic of deep learning: turning meaning into vectors, then into geometric spaces,
and then incrementally learning complex geometric transformations that map one space to
another. All you need are spaces of sufficiently high dimensionality in order to capture the
full scope of the relationships found in the original data

Rethinking about deep learning

» The whole process hinges on a single core idea: that meaning is derived from the pairwise
relationship between things (between words in a language, between pixels in an image, and
so on) and that these relationships can be captured by a distance function. But note that
whether the brain also implements meaning via geometric spaces is an entirely separate
question. Vector spaces are efficient to work with from a computational standpoint, but
different data structures for intelligence can easily be envisioned—in particular, graphs.

» Neural networks initially emerged from the idea of using graphs as a way to encode
meaning, which 1s why they’re named neural networks; the surrounding field of research
used to be called connectionism. Nowadays the name “neural network™ exists purely for
historical reasons—it’s an extremely misleading name because they’re neither neural nor
networks. In particular, neural networks have hardly anything to do with the brain. A more
appropriate name would have been layered representations learning or hierarchical
representations learning, or maybe even deep differentiable models or chained geometric
transforms, to emphasize the fact that continuous geometric space manipulation is at their

» deep learning model is just a chain of simple, continuous geometric
transformations mapping one vector space into another. All it can do is map
one data manifold X into another manifold Y, assuming the existence of a
learnable continuous transform from X to Y. A deep learning model can be

Interpreted as a kind of program, but, inversely, most programs cant be
expressed as deep learning models

» For most tasks, either there exists no corresponding neural network of
reasonable size that solves the task or, even if one exists, it may not be

learnable : the corresponding geometric transform may be far too complex, or
there may not be appropriate data available to learn it

42

