
Hyperparamter search and meta learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Getting the most out of your models

 You’ve come far since the beginning of this course

 You can now train image classification models, timeseries forecasting models, text-

classification models, and even generative models for images

 The flexibility of neural networks, however, is also one of their main drawbacks: there are

many hyperparameters to tweak

 How many layers should you stack?

 How many units or filters should go in each layer?

 Should you use ReLU as activation, or a different function?

 Should you use BatchNormalization after a given layer?

 How much dropout should you use?

 These architecture-level parameters are called hyperparameters to distinguish them from

the parameters of a model, which are trained via backpropagation

2

1. Hyperparamter search

 One option is to simply try many combinations of hyperparameters and see

which one works best on the validation set (or use K-fold cross-validation)

 We can use GridSearchCV or RandomizedSearchCV to explore the hyperparameter space

 When training is slow, however (e.g., for more complex problems with larger datasets), this

approach will only explore a tiny portion of the hyperparameter space

3

× 1,000

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-

cfa76de27c6b

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-cfa76de27c6b

Hyperparamter search

 You can alleviate this problem by assisting the search process manually

 First run a quick random search using wide ranges of hyperparameter values, then run

another search using smaller ranges of values centered on the best ones found during the

first run, and so on. This approach will hopefully zoom in on a good set of hyperparameters

4

 The core idea of most of the advance algorithm is

simple: when a region of the space turns out to be good,

it should be explored more. Such techniques take care of

the “zooming” process for you and lead to much better

solutions in much less time

 There are plenty of hyperparameter search algorithms

 Bayesian optimization, evolutionary optimization, early

stopping-based (Hyperband) …

 However, most of them are no longer embarrassing parallel

https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization

Why automatically hyperparamter search?

 In practice, experienced machine learning engineers build intuition over time

as to what works and what doesn’t when it comes to hyperparamter search

 But it shouldn’t be your job as a human to fiddle with hyperparameters all day—that is

better left to a machine. Thus you need to explore the space of possible decisions

automatically, systematically, in a principled way. The process of optimizing looks like this:

5

1. Choose a set of hyperparameters (Automatically)

2. Build the corresponding model

3. Fit it to your training data, and measure performance on the validation data

4. Choose the next set of hyperparameters (Automatically)

5. Repeat

6. Eventually, measure performance on a test data

Why automatically hyperparamter search?

 The key to this process is various hyperparameter values to choose the next set

of hyperparameters to evaluate. But it is challenging considering the fact that

1. The hyperparameter space is typically made up of discrete decisions and thus isn’t

continuous or differentiable. Hence, you typically can’t do gradient descent in

hyperparameter space. Instead, you must rely on gradient-free optimization techniques,

which naturally are far less efficient than gradient descent

2. Computing the feedback signal of this optimization process (does this set of

hyperparameters lead to a high-performing model on this task?) can be extremely

expensive: it requires creating and training a new model from scratch on your dataset

3. The feedback signal may be noisy: if a training run performs 0.2% better, is that because

of a better model configuration, or because you got lucky with the initial weight values?

6

Why automatically hyperparamter search?

 Overall, hyperparameter optimization is a powerful technique that is an

absolute requirement for getting to state-of-the-art models on any task

 Think about it: once upon a time, people handcrafted the features that went into shallow

machine learning models. That was very much suboptimal. Now, deep learning automates

the task of hierarchical feature engineering—features are learned using a feedback signal,

not hand-tuned, and that’s the way it should be

 In the same way, you shouldn’t handcraft your model architectures; you should optimize

them in a principled way

 However, doing hyperparameter tuning is not a replacement for being familiar with model

architecture best practices. You need to be smart about designing the right search space.

Hyperparameter tuning is automation, not magic: you use it to automate experiments that

you would otherwise have run by hand, but you still need to handpick experiment

configurations that have the potential to yield good metrics

7

Automatically hyperparamter search to AutoML

 We can also be far more ambitious and attempt to generate the model

architecture itself from scratch, with as few constraints as possible, such as via

reinforcement learning or evolutionary algorithms

8

https://www.manning.com/books/automated-

machine-learning-in-action

 For example, Google has used an evolutionary

approach, not just to search for

hyperparameters but also to look for the best

neural network architecture for the problem;

their AutoML suite is already available as a

cloud service

 In the future, entire end-to-end machine

learning pipelines will be automatically

generated, rather than be handcrafted by

engineer-artisans. This is called automated

machine learning, or AutoML

https://www.manning.com/books/automated-machine-learning-in-action
https://cloud.google.com/automl/

 Meta learning is one of the key component behind AutoML

2. What is Meta Learning?

cat dog

cat

𝑓∗

𝐹

Testing

Training Examples

classifier

function

input

output

Learning

algorithm

Learned from data

Hand-crafted

Can we learn this function?

9

Review: Gradient descent

𝜽𝟎 𝜽′

gradient

Init

Compute

Gradient

Update

Training

Data

𝜽′′

Compute

Gradient

Update

Training

Data

𝜽∗

Network

Structure

Gradient

Descent

(Function 𝐹)

𝜙

gradient

𝜙

10
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx

MAMLNAS

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx

Meta learning – Step 1

 What is learnable in a learning algorithm?

cat dog

cat

𝑓∗

𝐹

Testing

𝜙: learnable components

Net Architecture,

Initial Parameters,

Learning Rate,

……

𝐹𝜙
Training Examples

classifier

Deep

Learning

Categorize meta learning

based on what is learnable

Component

11

 Define loss function for learning algorithm 𝐹𝜙

 Sample tasks from training tasks (Analog of training sample

in supervised learning)

apple orange apple orange

Train Test

Task 2

Car & Bike

Meta learning – Step 2

Train Test

Task 1
Apple &

Orange
Training

Tasks

bike carbike car

𝐿 𝜙
𝐿 𝜙

12

Meta learning – Step 2

13

Task 1

𝑙1

apple orange

apple orange

𝐹𝜙

prediction

Training

Examples

Testing

Examples

Compute

difference apple orange apple orange

apple orange apple orange

Cross-entropy

Ground Truth

Cross-entropy

𝑓𝜽𝟏∗

𝑓𝜽𝟏∗ 𝑓𝜽𝟏∗

Meta learning – Step 2

14

Task 1

𝑙1

apple orange

apple orange

𝐹𝜙

𝐿 𝜙 = 𝑙1 + 𝑙2Total loss: (sum over all the

training tasks)

prediction

Training

Examples

Testing

Examples

𝑙2

𝐹𝜙

prediction

Testing

Examples

Task 2

bike car

bike car

𝑓𝜽𝟏∗ 𝑓𝜽𝟐∗

Meta learning – Step 3

 Loss function for learning algorithm where N is the

number of training tasks we collect

 Find 𝜙 that can minimize 𝐿 𝜙

 Using the optimization approach you know

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛

𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

𝐿 𝜙

Now we have a learned “learning algorithm” F𝜙∗

If you know how to compute Τ𝜕𝐿 𝜙 𝜕𝜙

Gradient descent is your friend.

What if 𝐿 𝜙 is not differentiable?

Reinforcement Learning / Evolutionary Algorithm

15

Framework

16

cat dog

apple orange bike car

Training Tasks

F𝜙∗

Testing

Task

cat

𝑓𝜽∗

Learned

“Learning

Algorithm”

Task 1 Task 2

Train

TestWhat we really

care about

Related to the testing task

only need little labeled training data

𝑙1

apple orange

apple orange

𝐹𝜙

prediction

Training

Examples

Testing

Examples

𝑓𝜽∗

To compute the loss

Within-task Training

Within-task Testing

If your optimization method needs to

compute 𝐿 𝜙

Across-task training (Meta-training)

includes several within-task training

and testing

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛

Outer Loop in “Learning to initialize”

Inner Loop in “Learning to initialize”

Framework

17

Support set

Query set

Framework

18

Across-task

Testing

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

𝜃0 𝜃1

𝛻𝜃

Init

Compute

Gradient

Update

Training

Data

𝜃2

𝛻𝜃

Compute

Gradient

Update

Training

Data

෠𝜃

Network

Structure

Learning

Algorithm

(Function 𝐹)

Only focus on

initialization parameter

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛 መ𝜃𝑛
Loss Function:

෠𝜃𝑛: model learned from task 𝑛

𝑙𝑛 ෠𝜃𝑛 : loss of task 𝑛 on the

testing set of task 𝑛

෠𝜃𝑛 depends on 𝜙

𝜙

𝜙

3. Model-Agnostic Meta-Learning (MAML)

19

MAML

How to minimize 𝐿 𝜙 ?

𝜙 ← 𝜙 − 𝜂𝛻𝜙𝐿 𝜙
Gradient Descent

Model Pre-training

𝐿 𝜙 ≈ ෍

𝑛=1

𝑁

𝑙𝑛 𝜙

Loss Function:

Find 𝜙 achieving good performance after

training
Potential

Find 𝜙 achieving good performance
Current

performance

෠𝜃𝑛: model learned from task 𝑛

𝑙𝑛 ෠𝜃𝑛 : loss of task 𝑛 on the

testing set of task 𝑛

෠𝜃𝑛 depends on 𝜙

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛 መ𝜃𝑛

Loss Function:

MAML

Widely used in

transfer learning

20

https://towardsdatascience.com/paper-repro-deep-metalearning-using-maml-and-reptile-fd1df1cc81b0

𝜙 Model

Parameter

𝑙1 (Loss

of task 1)

𝑙2 (Loss

of task 2)

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛 መ𝜃𝑛

We don’t care about the

performance of 𝜙 on the

training task

We care about the ෠𝜃𝑛 derive

from 𝜙

መ𝜃1

Small 𝑙2 ෠𝜃2

መ𝜃2

Small 𝑙1 ෠𝜃1

MAML

21
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Meta1%20(v6).pptx

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Meta1%20(v6).pptx

𝑙1 (Loss

of task 1)

𝑙2 (Loss

of task 2)

Model

Parameter

𝐿 𝜙 ≈ ෍

𝑛=1

𝑁

𝑙𝑛 𝜙

Find the 𝜙 that is good for all task

𝜙

We do not guarantee whether

𝜙 will get good ෠𝜃𝑛

𝑙2 መ𝜃2

Model Pre-training

22

Few-shot Image Classification

 Each class only has a few images

 N-ways K-shot classification: In each task, there are N classes, each has K

examples

 In meta learning, you need to prepare many N-ways K-shot tasks as training

and testing tasks

Class 1 Class 1 Class 2 Class 2 Class 3 Class 3 Which

class?3-ways 2-shot

23

Omniglot

 1,623 characters

 Each has 20 examples

https://github.com/brendenlake/omniglot

24

https://github.com/brendenlake/omniglot

Omniglot

 Split your characters into training and testing characters

 Sample 𝑁 training characters, sample 𝐾 examples from each sampled characters → one

training task

 Sample 𝑁 testing characters, sample 𝐾 examples from each sampled characters → one

testing task

20 ways

1 shot

Each character

represents a class

Training set

(Support set)

Testing set

(Query set)

Demo:

https://openai.com/blog/reptile/

25

https://openai.com/blog/reptile/

A brief introduction to Reinforcement Learning

 Reinforcement Learning

 Reinforcement Learning is very different

one. The learning system, called an

agent in this context, can observe the

environment, select and perform actions,

and get rewards in return

 It must then learn by itself what is the

best strategy, called a policy, to get the

most reward over time

 Robots, AlphaGo…

26

 Evolutionary algorithm or Reinforcement learning

Network

Architecture

෠𝜙 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

𝐿 𝜙 𝛻𝜙𝐿 𝜙 =?

An agent uses a set of actions to

determine the network architecture.

𝜙: the agent’s parameters

−𝐿 𝜙

Reward to be

maximized

4. Network Architecture Search (NAS)

27

Network Architecture Search (NAS)

 Key idea is that we can specify the structure and connectivity of a neural

network by using a configuration string

 [“Filter Width: 5”, “Filter Height: 3”, “Num Filters: 24”]

 The idea is to use a RNN (“agent”) to generate this string that specifies a neural

network architecture

 Train this architecture (“child network”) to see how well it performs on a

validation set

 Use reinforcement learning to update the parameters of the agent model based

on the accuracy of the child model

 The implementation is available here

28

https://github.com/titu1994/neural-architecture-search

form a network with

probabilities 𝑝

Train the network

−𝐿 𝜙 agent 𝜙 (RNN)

Within-task Training

Accuracy of

the network

Update 𝜙 to maximize reward −𝐿 𝜙Across-task

Training

Network Architecture Search (NAS)

29
https://arxiv.org/pdf/1611.01578.pdf

Softmax layer

https://arxiv.org/pdf/1611.01578.pdf

NAS

 Their design may be based on

reinforcement learning (RL),

evolutionary algorithm (EA), gradient

optimization (GO), random search

(RS), and sequential model-based

optimization (SMBO)…

 Some popular models

 EfficeintNet

 RegNet

 MobileNet v3

30
https://arxiv.org/abs/2006.02903

https://ai.googleblog.com/2021/09/toward-fast-and-accurate-neural.html
https://arxiv.org/abs/2003.13678
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://arxiv.org/abs/2006.02903

5. Automatic machine learning

 Automated machine learning (AutoML) is the process of automating the tasks

of applying machine learning to real-world problems

31

 Meta-learning and automatically

hyperparameter tuning are two key

components

 However, AutoML potentially includes

every stage from beginning with a raw

dataset to building a machine learning

model ready for deployment (data

preprocessing, feature engineering, model

selection and hyperparameter tuning)

https://www.manning.com/books/automated-

machine-learning-in-action

https://en.wikipedia.org/wiki/Automated_machine_learning
https://www.manning.com/books/automated-machine-learning-in-action

Automatic machine learning

 Users with more ML expertise can achieve more personalized solutions

to meet their requirements using lower-level libraries

32
https://www.manning.com/books/automated-machine-learning-in-action

https://www.manning.com/books/automated-machine-learning-in-action

Conclusion

 Hyperparameter selection is crucial for the success of your neural network

architecture, since they heavily influence the behavior of the learned model

 Automatic hyperparameter tuning is an area that studies how to efficiently search the space

of possible hyperparameters

 Meta-learning can be a powerful tool for AutoML

 Model-Agnostic Meta-Learning and Network Architecture Search are two active research

fields

 Today, AutoML is still in its early days, and it doesn’t scale to large problems

 But when AutoML becomes mature enough for widespread adoption, the jobs of machine

learning engineers will move up the value-creation chain

 They will begin to put much more effort into data curation, crafting complex loss functions

that truly reflect business goals, as well as understanding how their models impact the

digital ecosystems in which they’re deployed

33

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Chapter 11,19

[2] Deep learning with Python, 2nd Edition Chapter 13

[3] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php Lecture 15

[4] Automated Machine Learning in Action Chapter 1 and Chapter 4

34

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://www.manning.com/books/automated-machine-learning-in-action

Appendix

35

Resources

 Automatic machine learning

 https://en.wikipedia.org/wiki/Automated_machine_learning

 https://en.wikipedia.org/wiki/Neural_architecture_search

 https://en.wikipedia.org/wiki/Hyperparameter_optimization

 Meta learning

 A Survey of Deep Meta-Learning

 AutoAugment: Learning Augmentation Policies from Data

 Learning an Explicit Mapping For Sample Weighting

 Learning to learn by gradient descent by gradient descent

 Metric learning

 Revisiting Metric Learning for Few-Shot Image Classification

36

https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://arxiv.org/abs/2010.03522
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1902.07379
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1907.03123

Libraries

 Hyperas or Talos

 Useful libraries for optimizing hyperparameters for Keras models (the former is based on Hyperopt)

 Topt

 Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

 Neural network inference, h2o-3 or AutoGlon

 An open source AutoML toolkit for automate machine learning lifecycle

 Scikit-Optimize (skopt)

 A general-purpose optimization library. The BayesSearchCV class performs Bayesian optimization using

an interface similar to GridSearchCV

 Sklearn-Deap

 A hyperparameter optimization library based on evolutionary algorithms, with a GridSearchCV-like

interface

37

https://github.com/maxpumperla/hyperas
https://github.com/autonomio/talos
https://github.com/hyperopt/hyperopt/
https://github.com/EpistasisLab/tpot
https://github.com/microsoft/nni
https://github.com/h2oai/h2o-3
https://github.com/awslabs/autogluon
https://scikit-optimize.github.io/stable/
https://github.com/rsteca/sklearn-deap

Services

 https://sigopt.com/

 https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-

tuning

 https://bigml.com/api/optimls

38

https://sigopt.com/
https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-tuning
https://bigml.com/api/optimls

Rethinking about deep learning

 In deep learning, everything is a vector—that is to say, everything is a point in

a geometric space.

 Model inputs (text, images, and so on) and targets are first vectorized— turned into an

initial input vector space and target vector space. Each layer in a deep learning model

operates one simple geometric transformation on the data that goes through it. Together,

the chain of layers in the model forms one complex geometric transformation, broken

down into a series of simple ones. This complex transformation attempts to map the input

space to the target space, one point at a time.

 This transformation is parameterized by the weights of the layers, which are iteratively

updated based on how well the model is currently performing. A key characteristic of this

geometric transformation is that it must be differentiable, which is required in order for us

to be able to learn its parameters via gradient descent. Intuitively, this means the geometric

morphing from inputs to outputs must be smooth and continuous—a significant constraint

39

Rethinking about deep learning

 The entire process of applying this complex geometric transformation to the input data can

be visualized in 3D by imagining a person trying to uncrumple a paper ball: the crumpled

paper ball is the manifold of the input data that the model starts with. Each movement

operated by the person on the paper ball is similar to a simple geometric transformation

operated by one layer. The full uncrumpling gesture sequence is the complex

transformation of the entire model. Deep learning models are mathematical machines for

uncrumpling complicated manifolds of highdimensional data

 That’s the magic of deep learning: turning meaning into vectors, then into geometric spaces,

and then incrementally learning complex geometric transformations that map one space to

another. All you need are spaces of sufficiently high dimensionality in order to capture the

full scope of the relationships found in the original data

40

Rethinking about deep learning

 The whole process hinges on a single core idea: that meaning is derived from the pairwise

relationship between things (between words in a language, between pixels in an image, and

so on) and that these relationships can be captured by a distance function. But note that

whether the brain also implements meaning via geometric spaces is an entirely separate

question. Vector spaces are efficient to work with from a computational standpoint, but

different data structures for intelligence can easily be envisioned—in particular, graphs.

 Neural networks initially emerged from the idea of using graphs as a way to encode

meaning, which is why they’re named neural networks; the surrounding field of research

used to be called connectionism. Nowadays the name “neural network” exists purely for

historical reasons—it’s an extremely misleading name because they’re neither neural nor

networks. In particular, neural networks have hardly anything to do with the brain. A more

appropriate name would have been layered representations learning or hierarchical

representations learning, or maybe even deep differentiable models or chained geometric

transforms, to emphasize the fact that continuous geometric space manipulation is at their

core
41

Rethinking about deep learning

 deep learning model is just a chain of simple, continuous geometric

transformations mapping one vector space into another. All it can do is map

one data manifold 𝑋 into another manifold 𝑌, assuming the existence of a

learnable continuous transform from 𝑋 to 𝑌. A deep learning model can be

interpreted as a kind of program, but, inversely, most programs can’t be

expressed as deep learning models

 For most tasks, either there exists no corresponding neural network of

reasonable size that solves the task or, even if one exists, it may not be

learnable : the corresponding geometric transform may be far too complex, or

there may not be appropriate data available to learn it

42

