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Getting the most out of your models

 You’ve come far since the beginning of this course

 You can now train image classification models, timeseries forecasting models, text-

classification models, and even generative models for images

 The flexibility of neural networks, however, is also one of their main drawbacks: there are 

many hyperparameters to tweak

 How many layers should you stack? 

 How many units or filters should go in each layer? 

 Should you use ReLU as activation, or a different function? 

 Should you use BatchNormalization after a given layer? 

 How much dropout should you use? 

 These architecture-level parameters are called hyperparameters to distinguish them from 

the parameters of a model, which are trained via backpropagation
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1. Hyperparamter search

 One option is to simply try many combinations of hyperparameters and see 

which one works best on the validation set (or use K-fold cross-validation)

 We can use GridSearchCV or RandomizedSearchCV to explore the hyperparameter space

 When training is slow, however (e.g., for more complex problems with larger datasets), this 

approach will only explore a tiny portion of the hyperparameter space
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× 1,000

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-

cfa76de27c6b

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-cfa76de27c6b


Hyperparamter search

 You can alleviate this problem by assisting the search process manually

 First run a quick random search using wide ranges of hyperparameter values, then run

another search using smaller ranges of values centered on the best ones found during the 

first run, and so on. This approach will hopefully zoom in on a good set of hyperparameters
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 The core idea of most of the advance algorithm is 

simple: when a region of the space turns out to be good, 

it should be explored more. Such techniques take care of 

the “zooming” process for you and lead to much better 

solutions in much less time

 There are plenty of hyperparameter search algorithms

 Bayesian optimization, evolutionary optimization, early 

stopping-based (Hyperband) …

 However, most of them are no longer embarrassing parallel

https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization


Why automatically hyperparamter search?

 In practice, experienced machine learning engineers build intuition over time 

as to what works and what doesn’t when it comes to hyperparamter search

 But it shouldn’t be your job as a human to fiddle with hyperparameters all day—that is 

better left to a machine. Thus you need to explore the space of possible decisions 

automatically, systematically, in a principled way. The process of optimizing looks like this:
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1. Choose a set of hyperparameters (Automatically)

2. Build the corresponding model

3. Fit it to your training data, and measure performance on the validation data

4. Choose the next set of hyperparameters (Automatically)

5. Repeat

6. Eventually, measure performance on a test data



Why automatically hyperparamter search?

 The key to this process is various hyperparameter values to choose the next set 

of hyperparameters to evaluate. But it is challenging considering the fact that

1. The hyperparameter space is typically made up of discrete decisions and thus isn’t 

continuous or differentiable. Hence, you typically can’t do gradient descent in 

hyperparameter space. Instead, you must rely on gradient-free optimization techniques, 

which naturally are far less efficient than gradient descent

2. Computing the feedback signal of this optimization process (does this set of 

hyperparameters lead to a high-performing model on this task?) can be extremely 

expensive: it requires creating and training a new model from scratch on your dataset

3. The feedback signal may be noisy: if a training run performs 0.2% better, is that because 

of a better model configuration, or because you got lucky with the initial weight values?
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Why automatically hyperparamter search?

 Overall, hyperparameter optimization is a powerful technique that is an 

absolute requirement for getting to state-of-the-art models on any task 

 Think about it: once upon a time, people handcrafted the features that went into shallow 

machine learning models. That was very much suboptimal. Now, deep learning automates 

the task of hierarchical feature engineering—features are learned using a feedback signal, 

not hand-tuned, and that’s the way it should be

 In the same way, you shouldn’t handcraft your model architectures; you should optimize 

them in a principled way

 However, doing hyperparameter tuning is not a replacement for being familiar with model 

architecture best practices. You need to be smart about designing the right search space. 

Hyperparameter tuning is automation, not magic: you use it to automate experiments that 

you would otherwise have run by hand, but you still need to handpick experiment 

configurations that have the potential to yield good metrics
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Automatically hyperparamter search to AutoML

 We can also be far more ambitious and attempt to generate the model 

architecture itself from scratch, with as few constraints as possible, such as via 

reinforcement learning or evolutionary algorithms

8

https://www.manning.com/books/automated-

machine-learning-in-action

 For example, Google has used an evolutionary 

approach, not just to search for 

hyperparameters but also to look for the best 

neural network architecture for the problem; 

their AutoML suite is already available as a 

cloud service

 In the future, entire end-to-end machine 

learning pipelines will be automatically 

generated, rather than be handcrafted by 

engineer-artisans. This is called automated 

machine learning, or AutoML

https://www.manning.com/books/automated-machine-learning-in-action
https://cloud.google.com/automl/


 Meta learning is one of the key component behind AutoML

2. What is Meta Learning?

cat dog
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𝐹
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Training Examples
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Learned from data
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Can we learn this function?
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Review: Gradient descent 
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https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx

MAMLNAS

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx


Meta learning – Step 1

 What is learnable in a learning algorithm?

cat dog

cat
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 Define loss function for learning algorithm 𝐹𝜙

 Sample tasks from training tasks (Analog of training sample 

in supervised learning)
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Task 2

Car & Bike

Meta learning – Step 2
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Training 
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𝐿 𝜙
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Meta learning – Step 2
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Meta learning – Step 2
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Task 1
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Meta learning – Step 3

 Loss function for learning algorithm where N is the 

number of training tasks we collect

 Find 𝜙 that can minimize 𝐿 𝜙

 Using the optimization approach you know

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛

𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

𝐿 𝜙

Now we have a learned “learning algorithm” F𝜙∗

If you know how to compute Τ𝜕𝐿 𝜙 𝜕𝜙

Gradient descent is your friend.

What if 𝐿 𝜙 is not differentiable?  

Reinforcement Learning / Evolutionary Algorithm 
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Framework
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𝑙1

apple orange

apple orange

𝐹𝜙
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Examples
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To compute the loss

Within-task Training

Within-task Testing

If your optimization method needs to 

compute 𝐿 𝜙

Across-task training (Meta-training) 

includes several within-task training 

and testing

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛

Outer Loop in “Learning to initialize” 

Inner Loop in “Learning to initialize” 

Framework
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Support set

Query set



Framework
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Across-task

Testing

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision
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3. Model-Agnostic Meta-Learning (MAML) 
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MAML

How to minimize 𝐿 𝜙 ? 

𝜙 ← 𝜙 − 𝜂𝛻𝜙𝐿 𝜙
Gradient Descent

Model Pre-training

𝐿 𝜙 ≈ ෍

𝑛=1

𝑁

𝑙𝑛 𝜙

Loss Function:

Find 𝜙 achieving good performance after 

training
Potential

Find 𝜙 achieving good performance
Current 

performance

෠𝜃𝑛: model learned from task 𝑛

𝑙𝑛 ෠𝜃𝑛 : loss of task 𝑛 on the 

testing set of task 𝑛

෠𝜃𝑛 depends on 𝜙

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛 መ𝜃𝑛

Loss Function:

MAML

Widely used in 

transfer learning
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https://towardsdatascience.com/paper-repro-deep-metalearning-using-maml-and-reptile-fd1df1cc81b0


𝜙 Model 

Parameter

𝑙1 (Loss 

of task 1)
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𝑁
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https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Meta1%20(v6).pptx


𝑙1 (Loss 

of task 1)

𝑙2 (Loss 

of task 2)

Model 

Parameter

𝐿 𝜙 ≈ ෍

𝑛=1

𝑁

𝑙𝑛 𝜙

Find the 𝜙 that is good for all task

𝜙

We do not guarantee whether 

𝜙 will get good ෠𝜃𝑛

𝑙2 መ𝜃2

Model Pre-training
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Few-shot Image Classification

 Each class only has a few images

 N-ways K-shot classification: In each task, there are N classes, each has K

examples

 In meta learning, you need to prepare many N-ways K-shot tasks as training 

and testing tasks

Class 1 Class 1 Class 2 Class 2 Class 3 Class 3 Which 

class?3-ways 2-shot 
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Omniglot

 1,623 characters

 Each has 20 examples

https://github.com/brendenlake/omniglot
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https://github.com/brendenlake/omniglot


Omniglot

 Split your characters into training and testing characters

 Sample 𝑁 training characters, sample 𝐾 examples from each sampled characters  → one 

training task

 Sample 𝑁 testing characters, sample 𝐾 examples from each sampled characters  → one 

testing task

20 ways

1 shot

Each character 

represents a class

Training set

(Support set)

Testing set

(Query set)

Demo:

https://openai.com/blog/reptile/
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https://openai.com/blog/reptile/


A brief introduction to Reinforcement Learning

 Reinforcement Learning

 Reinforcement Learning is very different 

one. The learning system, called an 

agent in this context, can observe the 

environment, select and perform actions, 

and get rewards in return

 It must then learn by itself what is the 

best strategy, called a policy, to get the 

most reward over time

 Robots, AlphaGo…
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 Evolutionary algorithm or Reinforcement learning

Network 

Architecture 

෠𝜙 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

𝐿 𝜙 𝛻𝜙𝐿 𝜙 =?

An agent uses a set of actions to 

determine the network architecture.   

𝜙: the agent’s parameters

−𝐿 𝜙

Reward to be 

maximized 

4. Network Architecture Search (NAS)
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Network Architecture Search (NAS)

 Key idea is that we can specify the structure and connectivity of a neural 

network by using a configuration string

 [“Filter Width: 5”, “Filter Height: 3”, “Num Filters: 24”]

 The idea is to use a RNN (“agent”) to generate this string that specifies a neural 

network architecture

 Train this architecture (“child network”) to see how well it performs on a 

validation set

 Use reinforcement learning to update the parameters of the agent model based 

on the accuracy of the child model

 The implementation is available here
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https://github.com/titu1994/neural-architecture-search


form a network with 

probabilities 𝑝

Train the network

−𝐿 𝜙 agent 𝜙 (RNN)

Within-task Training

Accuracy of 

the network

Update 𝜙 to maximize reward −𝐿 𝜙Across-task 

Training

Network Architecture Search (NAS)
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https://arxiv.org/pdf/1611.01578.pdf

Softmax layer

https://arxiv.org/pdf/1611.01578.pdf


NAS

 Their design may be based on 

reinforcement learning (RL), 

evolutionary algorithm (EA), gradient 

optimization (GO), random search 

(RS), and sequential model-based 

optimization (SMBO)…

 Some popular models

 EfficeintNet

 RegNet

 MobileNet v3
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https://arxiv.org/abs/2006.02903

https://ai.googleblog.com/2021/09/toward-fast-and-accurate-neural.html
https://arxiv.org/abs/2003.13678
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://arxiv.org/abs/2006.02903


5. Automatic machine learning

 Automated machine learning (AutoML) is the process of automating the tasks 

of applying machine learning to real-world problems
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 Meta-learning and automatically 

hyperparameter tuning are two key 

components

 However, AutoML potentially includes 

every stage from beginning with a raw 

dataset to building a machine learning 

model ready for deployment (data 

preprocessing,  feature engineering, model 

selection and hyperparameter tuning)

https://www.manning.com/books/automated-

machine-learning-in-action

https://en.wikipedia.org/wiki/Automated_machine_learning
https://www.manning.com/books/automated-machine-learning-in-action


Automatic machine learning

 Users with more ML expertise can achieve more personalized solutions 

to meet their requirements using lower-level libraries
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https://www.manning.com/books/automated-machine-learning-in-action

https://www.manning.com/books/automated-machine-learning-in-action


Conclusion

 Hyperparameter selection is crucial for the success of your neural network 

architecture, since they heavily influence the behavior of the learned model

 Automatic hyperparameter tuning is an area that studies how to efficiently search the space 

of possible hyperparameters

 Meta-learning can be a powerful tool for AutoML

 Model-Agnostic Meta-Learning and Network Architecture Search are two active research 

fields

 Today, AutoML is still in its early days, and it doesn’t scale to large problems

 But when AutoML becomes mature enough for widespread adoption, the jobs of machine 

learning engineers will move up the value-creation chain

 They will begin to put much more effort into data curation, crafting complex loss functions 

that truly reflect business goals, as well as understanding how their models impact the 

digital ecosystems in which they’re deployed
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Appendix
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Resources

 Automatic machine learning

 https://en.wikipedia.org/wiki/Automated_machine_learning

 https://en.wikipedia.org/wiki/Neural_architecture_search

 https://en.wikipedia.org/wiki/Hyperparameter_optimization

 Meta learning

 A Survey of Deep Meta-Learning

 AutoAugment: Learning Augmentation Policies from Data

 Learning an Explicit Mapping For Sample Weighting

 Learning to learn by gradient descent by gradient descent

 Metric learning

 Revisiting Metric Learning for Few-Shot Image Classification
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https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://arxiv.org/abs/2010.03522
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1902.07379
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1907.03123


Libraries

 Hyperas or Talos

 Useful libraries for optimizing hyperparameters for Keras models (the former is based on Hyperopt)

 Topt

 Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

 Neural network inference, h2o-3 or AutoGlon

 An open source AutoML toolkit for automate machine learning lifecycle

 Scikit-Optimize (skopt)

 A general-purpose optimization library. The BayesSearchCV class performs Bayesian optimization using 

an interface similar to GridSearchCV

 Sklearn-Deap

 A hyperparameter optimization library based on evolutionary algorithms, with a GridSearchCV-like 

interface
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https://github.com/maxpumperla/hyperas
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Services

 https://sigopt.com/

 https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-

tuning

 https://bigml.com/api/optimls

38

https://sigopt.com/
https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-tuning
https://bigml.com/api/optimls


Rethinking about deep learning

 In deep learning, everything is a vector—that is to say, everything is a point in 

a geometric space. 

 Model inputs (text, images, and so on) and targets are first vectorized— turned into an 

initial input vector space and target vector space. Each layer in a deep learning model 

operates one simple geometric transformation on the data that goes through it. Together, 

the chain of layers in the model forms one complex geometric transformation, broken 

down into a series of simple ones. This complex transformation attempts to map the input 

space to the target space, one point at a time. 

 This transformation is parameterized by the weights of the layers, which are iteratively 

updated based on how well the model is currently performing. A key characteristic of this 

geometric transformation is that it must be differentiable, which is required in order for us 

to be able to learn its parameters via gradient descent. Intuitively, this means the geometric 

morphing from inputs to outputs must be smooth and continuous—a significant constraint
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Rethinking about deep learning

 The entire process of applying this complex geometric transformation to the input data can 

be visualized in 3D by imagining a person trying to uncrumple a paper ball: the crumpled 

paper ball is the manifold of the input data that the model starts with. Each movement 

operated by the person on the paper ball is similar to a simple geometric transformation 

operated by one layer. The full uncrumpling gesture sequence is the complex 

transformation of the entire model. Deep learning models are mathematical machines for 

uncrumpling complicated manifolds of highdimensional data

 That’s the magic of deep learning: turning meaning into vectors, then into geometric spaces, 

and then incrementally learning complex geometric transformations that map one space to 

another. All you need are spaces of sufficiently high dimensionality in order to capture the 

full scope of the relationships found in the original data
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Rethinking about deep learning

 The whole process hinges on a single core idea: that meaning is derived from the pairwise 

relationship between things (between words in a language, between pixels in an image, and 

so on) and that these relationships can be captured by a distance function. But note that 

whether the brain also implements meaning via geometric spaces is an entirely separate 

question. Vector spaces are efficient to work with from a computational standpoint, but 

different data structures for intelligence can easily be envisioned—in particular, graphs.

 Neural networks initially emerged from the idea of using graphs as a way to encode 

meaning, which is why they’re named neural networks; the surrounding field of research 

used to be called connectionism. Nowadays the name “neural network” exists purely for 

historical reasons—it’s an extremely misleading name because they’re neither neural nor 

networks. In particular, neural networks have hardly anything to do with the brain. A more 

appropriate name would have been layered representations learning or hierarchical 

representations learning, or maybe even deep differentiable models or chained geometric 

transforms, to emphasize the fact that continuous geometric space manipulation is at their 

core
41



Rethinking about deep learning

 deep learning model is just a chain of simple, continuous geometric 

transformations mapping one vector space into another. All it can do is map 

one data manifold 𝑋 into another manifold 𝑌, assuming the existence of a 

learnable continuous transform from 𝑋 to 𝑌. A deep learning model can be 

interpreted as a kind of program, but, inversely, most programs can’t be 

expressed as deep learning models

 For most tasks, either there exists no corresponding neural network of 

reasonable size that solves the task or, even if one exists, it may not be 

learnable : the corresponding geometric transform may be far too complex, or 

there may not be appropriate data available to learn it
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